Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2445, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503728

RESUMO

Correlative light and electron microscopy (CLEM) is an important tool for the localisation of target molecule(s) and their spatial correlation with the ultrastructural map of subcellular features at the nanometre scale. Adoption of these advanced imaging methods has been limited in plant biology, due to challenges with plant tissue permeability, fluorescence labelling efficiency, indexing of features of interest throughout the complex 3D volume and their re-localization on micrographs of ultrathin cross-sections. Here, we demonstrate an imaging approach based on tissue processing and embedding into methacrylate resin followed by imaging of sections by both, single-molecule localization microscopy and transmission electron microscopy using consecutive CLEM and same-section CLEM correlative workflow. Importantly, we demonstrate that the use of a particular type of embedding resin is not only compatible with single-molecule localization microscopy but shows improvements in the fluorophore blinking behavior relative to the whole-mount approaches. Here, we use a commercially available Click-iT ethynyl-deoxyuridine cell proliferation kit to visualize the DNA replication sites of wild-type Arabidopsis thaliana seedlings, as well as fasciata1 and nucleolin1 plants and apply our in-section CLEM imaging workflow for the analysis of S-phase progression and nucleolar organization in mutant plants with aberrant nucleolar phenotypes.


Assuntos
Arabidopsis , Imagem Individual de Molécula , Microscopia de Fluorescência/métodos , Microscopia Eletrônica , Microscopia Eletrônica de Transmissão , Imagem Individual de Molécula/métodos , Elétrons
2.
J Cell Sci ; 134(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34635908

RESUMO

Desmosomes, strong cell-cell junctions of epithelia and cardiac muscle, link intermediate filaments to cell membranes and mechanically integrate cells across tissues, dissipating mechanical stress. They comprise five major protein classes - desmocollins and desmogleins (the desmosomal cadherins), plakoglobin, plakophilins and desmoplakin - whose individual contribution to the structure and turnover of desmosomes is poorly understood. Using live-cell imaging together with fluorescence recovery after photobleaching (FRAP) and fluorescence loss and localisation after photobleaching (FLAP), we show that desmosomes consist of two contrasting protein moieties or modules: a very stable moiety of desmosomal cadherins, desmoplakin and plakoglobin, and a highly mobile plakophilin (Pkp2a). As desmosomes mature from Ca2+ dependence to Ca2+-independent hyper-adhesion, their stability increases, but Pkp2a remains highly mobile. We show that desmosome downregulation during growth-factor-induced cell scattering proceeds by internalisation of whole desmosomes, which still retain a stable moiety and highly mobile Pkp2a. This molecular mobility of Pkp2a suggests a transient and probably regulatory role for Pkp2a in desmosomes. This article has an associated First Person interview with the first author of the paper.


Assuntos
Desmossomos , Placofilinas , Caderinas , Membrana Celular , Desmogleínas , Desmoplaquinas/genética , Humanos , Placofilinas/genética , gama Catenina
3.
Cell Rep ; 37(1): 109775, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34610312

RESUMO

Motile cilia defects impair cerebrospinal fluid (CSF) flow and can cause brain and spine disorders. The development of ciliated cells, their impact on CSF flow, and their function in brain and axial morphogenesis are not fully understood. We have characterized motile ciliated cells within the zebrafish brain ventricles. We show that the ventricles undergo restructuring through development, involving a transition from mono- to multiciliated cells (MCCs) driven by gmnc. MCCs co-exist with monociliated cells and generate directional flow patterns. These ciliated cells have different developmental origins and are genetically heterogenous with respect to expression of the Foxj1 family of ciliary master regulators. Finally, we show that cilia loss from the tela choroida and choroid plexus or global perturbation of multiciliation does not affect overall brain or spine morphogenesis but results in enlarged ventricles. Our findings establish that motile ciliated cells are generated by complementary and sequential transcriptional programs to support ventricular development.


Assuntos
Encéfalo/metabolismo , Cílios/metabolismo , Epêndima/metabolismo , Animais , Animais Geneticamente Modificados/metabolismo , Encéfalo/citologia , Encéfalo/patologia , Linhagem da Célula , Líquido Cefalorraquidiano/fisiologia , Cílios/patologia , Embrião não Mamífero/metabolismo , Epêndima/citologia , Epêndima/patologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Edição de Genes , Morfogênese , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Coluna Vertebral/crescimento & desenvolvimento , Coluna Vertebral/metabolismo , Telencéfalo/citologia , Telencéfalo/metabolismo , Telencéfalo/patologia , Tubulina (Proteína)/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
Curr Opin Cell Biol ; 68: 55-63, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33049465

RESUMO

The origin of the eukaryotic cell is one of the greatest mysteries in modern biology. Eukaryotic-wide specific biological processes arose in the lost ancestors of eukaryotes. These distinctive features, such as the actin cytoskeleton, define what it is to be a eukaryote. Recent sequencing, characterization, and isolation of Asgard archaea have opened an intriguing window into the pre-eukaryotic cell. Firstly, sequencing of anaerobic sediments identified a group of uncultured organisms, Asgard archaea, which contain genes with homology to eukaryotic signature genes. Secondly, characterization of the products of these genes at the protein level demonstrated that Asgard archaea have related biological processes to eukaryotes. Finally, the isolation of an Asgard archaeon has produced a model organism in which the morphological consequences of the eukaryotic-like processes can be studied. Here, we consider the consequences for the Asgard actin cytoskeleton and for the evolution of a regulated actin system in the archaea-to-eukaryotic transition.


Assuntos
Citoesqueleto de Actina/genética , Archaea/citologia , Proteínas Arqueais/genética , Evolução Biológica , Células Eucarióticas/citologia , Citoesqueleto de Actina/química , Citoesqueleto de Actina/fisiologia , Actinas/química , Actinas/genética , Animais , Archaea/química , Archaea/genética , Archaea/isolamento & purificação , Proteínas Arqueais/química , Proteínas Arqueais/fisiologia , Eucariotos/citologia , Eucariotos/genética , Eucariotos/metabolismo , Células Eucarióticas/química , Células Eucarióticas/fisiologia , Humanos , Metagenômica , Filogenia , Análise de Sequência de Proteína
5.
mBio ; 11(5)2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32900808

RESUMO

This study describes the first direct functional assignment of a highly abundant extracellular protein from a key environmental and biotechnological biofilm performing an anaerobic ammonium oxidation (anammox) process. Expression levels of Brosi_A1236, belonging to a class of proteins previously suggested to be cell surface associated, were in the top one percentile of all genes in the "Candidatus Brocadia sinica"-enriched biofilm. The Brosi_A1236 structure was computationally predicted to consist of immunoglobulin-like anti-parallel ß-strands, and circular dichroism conducted on the isolated surface protein indicated that ß-strands are the dominant higher-order structure. The isolated protein was stained positively by the ß-sheet-specific stain thioflavin T, along with cell surface- and matrix-associated regions of the biofilm. The surface protein has a large unstructured content, including two highly disordered domains at its C terminus. The disordered domains bound to the substratum and thereby facilitated the adhesion of negatively charged latex microspheres, which were used as a proxy for cells. The disordered domains and isolated whole surface protein also underwent liquid-liquid phase separation to form liquid droplets in suspension. Liquid droplets of disordered protein wet the surfaces of microspheres and bacterial cells and facilitated their coalescence. Furthermore, the surface layer protein formed gels as well as ordered crystalline structures. These observations suggest that biophysical remodeling through phase transitions promotes aggregation and biofilm formation.IMPORTANCE By employing biophysical and liquid-liquid phase separation concepts, this study revealed how a highly abundant extracellular protein enhances the key environmental and industrial bioprocess of anaerobic ammonium oxidation (anammox). Extracellular proteins of environmental biofilms are understudied and poorly annotated in public databases. Understanding the function of extracellular proteins is also increasingly important for improving bioprocesses and resource recovery. Here, protein functions were assessed based on theoretical predictions of intrinsically disordered domains, known to promote adhesion and liquid-liquid phase separation, and available surface layer protein properties. A model is thus proposed to explain how the protein promotes aggregation and biofilm formation by extracellular matrix remodeling and phase transitions. This work provides a strong foundation for functional investigations of extracellular proteins involved in biofilm development.


Assuntos
Compostos de Amônio/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Oxirredução , Anaerobiose , Bactérias/classificação , Bactérias/genética , Fenômenos Fisiológicos Bacterianos/genética , Proteínas de Bactérias/isolamento & purificação , Fenômenos Biofísicos
6.
Aging Cell ; 19(3): e13108, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32087607

RESUMO

Hutchinson-Gilford progeria is a premature aging syndrome caused by a truncated form of lamin A called progerin. Progerin expression results in a variety of cellular defects including heterochromatin loss, DNA damage, impaired proliferation and premature senescence. It remains unclear how these different progerin-induced phenotypes are temporally and mechanistically linked. To address these questions, we use a doxycycline-inducible system to restrict progerin expression to different stages of the cell cycle. We find that progerin expression leads to rapid and widespread loss of heterochromatin in G1-arrested cells, without causing DNA damage. In contrast, progerin triggers DNA damage exclusively during late stages of DNA replication, when heterochromatin is normally replicated, and preferentially in cells that have lost heterochromatin. Importantly, removal of progerin from G1-arrested cells restores heterochromatin levels and results in no permanent proliferative impediment. Taken together, these results delineate the chain of events that starts with progerin expression and ultimately results in premature senescence. Moreover, they provide a proof of principle that removal of progerin from quiescent cells restores heterochromatin levels and their proliferative capacity to normal levels.


Assuntos
Dano ao DNA/genética , Heterocromatina/metabolismo , Lamina Tipo A/metabolismo , Progéria/metabolismo , Transdução de Sinais/genética , Senilidade Prematura/genética , Senilidade Prematura/metabolismo , Proliferação de Células/genética , Células Cultivadas , Senescência Celular/genética , Dano ao DNA/efeitos dos fármacos , Replicação do DNA/genética , Doxorrubicina/farmacologia , Fibroblastos/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Expressão Gênica , Humanos , Lamina Tipo A/genética , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Progéria/genética
7.
Front Microbiol ; 10: 1615, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379775

RESUMO

The Gram-negative bacteria use the contractile multi-molecular structure, called the Type VI Secretion System (T6SS) to inject toxic products into eukaryotic and prokaryotic cells. In this study, we use fluorescent protein fusions and time-lapse microscopy imaging to study the assembly dynamics of the baseplate protein TssK in Pseudomonas aeruginosa T6SS. TssK formed transient higher-order structures that correlated with dynamics of sheath component TssB. Assembly of peri-membrane TssK structures occurred de novo upon contact with competing bacteria. We show that this assembly required presence of TagQ-TagR envelope sensors, activity of PpkA kinase and anchoring to the inner membrane via TssM. Disassembly and repositioning of TssK component was dependent on PppA phosphatase and indispensable for repositioning and deployment of the entire contractile apparatus toward a new target cell. We also show that TssE is necessary for correct elongation and stability of TssB-sheath, but not for TssK assembly. Therefore, in P. aeruginosa, assembly of the TssK-containing structure relays on the post-translational regulatory envelope module and acts as spatio-temporal marker for further recruitment and subsequent assembly of the contractile apparatus.

8.
Front Microbiol ; 10: 573, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31001211

RESUMO

The type three secretion system (T3SS) is a macromolecular protein nano-syringe used by different bacterial pathogens to inject effectors into host cells. The extracellular part of the syringe is a needle-like filament formed by the polymerization of a 9-kDa protein whose structure and proper localization on the bacterial surface are key determinants for efficient toxin injection. Here, we combined in vivo, in vitro, and in silico approaches to characterize the Pseudomonas aeruginosa T3SS needle and its major component PscF. Using a combination of mutagenesis, phenotypic analyses, immunofluorescence, proteolysis, mass spectrometry, atomic force microscopy, electron microscopy, and molecular modeling, we propose a model of the P. aeruginosa needle that exposes the N-terminal region of each PscF monomer toward the outside of the filament, while the core of the fiber is formed by the C-terminal helix. Among mutations introduced into the needle protein PscF, D76A, and P47A/Q54A caused a defect in the assembly of the needle on the bacterial surface, although the double mutant was still cytotoxic on macrophages in a T3SS-dependent manner and formed filamentous structures in vitro. These results suggest that the T3SS needle of P. aeruginosa displays an architecture that is similar to that of other bacterial needles studied to date and highlight the fact that small, targeted perturbations in needle assembly can inhibit T3SS function. Therefore, the T3SS needle represents an excellent drug target for small molecules acting as virulence blockers that could disrupt pathogenesis of a broad range of bacteria.

9.
Artigo em Inglês | MEDLINE | ID: mdl-28664153

RESUMO

To invade epithelial cells, Salmonella enterica serovar Typhimurium (S. Typhimurium) induces macropinocytosis through the action of virulence proteins delivered across the host cell membrane via a type III secretion system. We show that after docking at the plasma membrane S. Typhimurium triggers rapid recruitment of cytosolic SNX18, a SH3-PX-BAR domain sorting nexin protein, to the bacteria-induced membrane ruffles and to the nascent Salmonella-containing vacuole. SNX18 recruitment required the inositol-phosphatase activity of the Salmonella effector SopB and an intact phosphoinositide-binding site within the PX domain of SNX18, but occurred independently of Rho-GTPases Rac1 and Cdc42 activation. SNX18 promotes formation of the SCV from the plasma membrane by acting as a scaffold to recruit Dynamin-2 and N-WASP in a process dependent on the SH3 domain of SNX18. Quantification of bacteria uptake revealed that overexpression of SNX18 increased bacteria internalization, whereas a decrease was detected in cells overexpressing the phosphoinositide-binding mutant R303Q, the ΔSH3 mutant, and in cells where endogenous levels of SNX18 were knocked-down. This study identifies SNX18 as a novel target of SopB and suggests a mechanism where S. Typhimurium engages host factors via local manipulation of phosphoinositide composition at the site of invasion to orchestrate the internalization process.


Assuntos
Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Infecções por Salmonella/metabolismo , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidade , Nexinas de Classificação/metabolismo , Animais , Benzilaminas/farmacologia , Membrana Celular/metabolismo , Extensões da Superfície Celular , Citosol/metabolismo , Dinamina II/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Camundongos , Mutação , Fosfatidilinositóis/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Pinocitose , Quinoxalinas/farmacologia , Células RAW 264.7 , Infecções por Salmonella/microbiologia , Nexinas de Classificação/genética , Sistemas de Secreção Tipo III/metabolismo , Vacúolos , Virulência , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
10.
J Exp Med ; 213(11): 2293-2314, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27811056

RESUMO

It is well established that Ly6Chi monocytes develop from common monocyte progenitors (cMoPs) and reside in the bone marrow (BM) until they are mobilized into the circulation. In our study, we found that BM Ly6Chi monocytes are not a homogenous population, as current data would suggest. Using computational analysis approaches to interpret multidimensional datasets, we demonstrate that BM Ly6Chi monocytes consist of two distinct subpopulations (CXCR4hi and CXCR4lo subpopulations) in both mice and humans. Transcriptome studies and in vivo assays revealed functional differences between the two subpopulations. Notably, the CXCR4hi subset proliferates and is immobilized in the BM for the replenishment of functionally mature CXCR4lo monocytes. We propose that the CXCR4hi subset represents a transitional premonocyte population, and that this sequential step of maturation from cMoPs serves to maintain a stable pool of BM monocytes. Additionally, reduced CXCR4 expression on monocytes, upon their exit into the circulation, does not reflect its diminished role in monocyte biology. Specifically, CXCR4 regulates monocyte peripheral cellular activities by governing their circadian oscillations and pulmonary margination, which contributes toward lung injury and sepsis mortality. Together, our study demonstrates the multifaceted role of CXCR4 in defining BM monocyte heterogeneity and in regulating their function in peripheral tissues.


Assuntos
Células da Medula Óssea/citologia , Diferenciação Celular , Monócitos/citologia , Receptores CXCR4/metabolismo , Animais , Antígenos Ly/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Ritmo Circadiano/genética , Endotoxinas/toxicidade , Feminino , Perfilação da Expressão Gênica , Pulmão/irrigação sanguínea , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Monócitos/metabolismo
11.
Mol Microbiol ; 96(2): 419-36, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25614137

RESUMO

The export of bacterial toxins across the bacterial envelope requires the assembly of complex, membrane-embedded protein architectures. Pseudomonas aeruginosa employs type III secretion (T3S) injectisome to translocate exotoxins directly into the cytoplasm of a target eukaryotic cell. This multi-protein channel crosses two bacterial membranes and extends further as a needle through which the proteins travel. We show in this work that PscI, proposed to form the T3S system (T3SS) inner rod, possesses intrinsic properties to polymerize into flexible and regularly twisted fibrils and activates IL-1ß production in mouse bone marrow macrophages in vitro. We also found that point mutations within C-terminal amphipathic helix of PscI alter needle assembly in vitro and T3SS function in cell infection assays, suggesting that this region is essential for an efficient needle assembly. The overexpression of PscF partially compensates for the absence of the inner rod in PscI-deficient mutant by forming a secretion-proficient injectisome. All together, we propose that the polymerized PscI in P. aeruginosa optimizes the injectisome function by anchoring the needle within the envelope-embedded complex of the T3S secretome and - contrary to its counterpart in Salmonella - is not involved in substrate switching.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Polimerização , Transporte Proteico , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/genética , Sistemas de Secreção Tipo III/química , Sistemas de Secreção Tipo III/genética
12.
PLoS One ; 9(12): e115423, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25522146

RESUMO

Intracellular Salmonella enterica induce a massive remodeling of the endosomal system in infected host cells. One dramatic consequence of this interference is the induction of various extensive tubular aggregations of membrane vesicles, and tubules positive for late endosomal/lysosomal markers are referred to as Salmonella-induced filaments or SIF. SIF are highly dynamic in nature with extension and collapse velocities of 0.4-0.5 µm x sec-1. The induction of SIF depends on the function of the Salmonella Pathogenicity Island 2 (SPI2) encoded type III secretion system (T3SS) and a subset of effector proteins. In this study, we applied live cell imaging and electron microscopy to analyze the role of individual effector proteins in SIF morphology and dynamic properties of SIF. SIF in cells infected with sifB, sseJ, sseK1, sseK2, sseI, sseL, sspH1, sspH2, slrP, steC, gogB or pipB mutant strains showed a morphology and dynamics comparable to SIF induced by WT Salmonella. SIF were absent in cells infected with the sifA-deficient strain and live cell analyses allowed tracking of the loss of the SCV membrane of intracellular sifA Salmonella. In contrast to analyses in fixed cells, in living host cells SIF induced by sseF- or sseG-deficient strains were not discontinuous, but rather continuous and thinner in diameter. A very dramatic phenotype was observed for the pipB2-deficient strain that induced very bulky, non-dynamic aggregations of membrane vesicles. Our study underlines the requirement of the study of Salmonella-host interaction in living systems and reveals new phenotypes due to the intracellular activities of Salmonella.


Assuntos
Proteínas de Bactérias/metabolismo , Endossomos/microbiologia , Glicoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Salmonella enterica/patogenicidade , Proteínas de Bactérias/genética , Endossomos/metabolismo , Glicoproteínas/genética , Células HeLa , Humanos , Proteínas de Membrana/genética , Salmonella enterica/metabolismo
13.
PLoS Pathog ; 10(9): e1004374, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25254663

RESUMO

During the intracellular life of Salmonella enterica, a unique membrane-bound compartment termed Salmonella-containing vacuole, or SCV, is formed. By means of translocated effector proteins, intracellular Salmonella also induce the formation of extensive, highly dynamic membrane tubules termed Salmonella-induced filaments or SIF. Here we report the first detailed ultrastructural analyses of the SCV and SIF by electron microscopy (EM), EM tomography and live cell correlative light and electron microscopy (CLEM). We found that a subset of SIF is composed of double membranes that enclose portions of host cell cytosol and cytoskeletal filaments within its inner lumen. Despite some morphological similarities, we found that the formation of SIF double membranes is independent from autophagy and requires the function of the effector proteins SseF and SseG. The lumen of SIF network is accessible to various types of endocytosed material and our CLEM analysis of double membrane SIF demonstrated that fluid phase markers accumulate only between the inner and outer membrane of these structures, a space continual with endosomal lumen. Our work reveals how manipulation of the endosomal membrane system by an intracellular pathogen results in a unique tubular membrane compartmentalization of the host cell, generating a shielded niche permissive for intracellular proliferation of Salmonella.


Assuntos
Endossomos/metabolismo , Membranas Intracelulares/metabolismo , Macrófagos/patologia , Infecções por Salmonella/metabolismo , Salmonella/fisiologia , Vacúolos/metabolismo , Animais , Autofagia , Proteínas de Bactérias/metabolismo , Endossomos/ultraestrutura , Células HeLa , Humanos , Membranas Intracelulares/ultraestrutura , Macrófagos/microbiologia , Camundongos , Microscopia Eletrônica de Transmissão , Fagocitose/fisiologia , Transporte Proteico , Infecções por Salmonella/microbiologia , Infecções por Salmonella/patologia , Vacúolos/ultraestrutura
14.
MethodsX ; 1: 36-41, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26150932

RESUMO

In contrast to phagocytosis, macropinocytosis is not directly initiated by interactions between cell surface receptors and cargo ligands, but is a result of constitutive membrane ruffling driven by dynamic remodelling of cortical actin cytoskeleton in response to stimulation of growth factor receptors. Wang et al. (2010) [13] developed a reliable assay that allows quantitative assessment of the efficiency and kinetics of macropinosome biogenesis and/or maturation in cells where the function of a targeted protein has been perturbed by pharmacological inhibitors or by knock-down or knock-out approaches. In this manuscript we describe a modified quantitative protocol to measure the rate and volume of fluid phase uptake in adherent cells. This assay:•uses fluorescent dextran, microscopy and semi-automated image analysis;•allows quantitation of macropinosomes within large numbers of individual cells;•can be applied also to non-homogenous cell populations including transiently transfected cell monolayers. We present the background necessary to consider when customising this protocol for application to new cell types or experimental variations.

15.
Cell Host Microbe ; 14(6): 675-82, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24331465

RESUMO

Autophagy is reported to be an important innate immune defense against the intracellular bacterial pathogen Group A Streptococcus (GAS). However, the GAS strains examined to date belong to serotypes infrequently associated with human disease. We find that the globally disseminated serotype M1T1 clone of GAS can evade autophagy and replicate efficiently in the cytosol of infected cells. Cytosolic M1T1 GAS (strain 5448), but not M6 GAS (strain JRS4), avoids ubiquitylation and recognition by the host autophagy marker LC3 and ubiquitin-LC3 adaptor proteins NDP52, p62, and NBR1. Expression of SpeB, a streptococcal cysteine protease, is critical for this process, as an isogenic M1T1 ΔspeB mutant is targeted to autophagy and attenuated for intracellular replication. SpeB degrades p62, NDP52, and NBR1 in vitro and within the host cell cytosol. These results uncover a proteolytic mechanism utilized by GAS to escape the host autophagy pathway that may underpin the success of the M1T1 clone.


Assuntos
Autofagia , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Streptococcus pyogenes/imunologia , Streptococcus pyogenes/fisiologia , Proteínas de Bactérias/metabolismo , Linhagem Celular , Citosol/microbiologia , Exotoxinas/metabolismo , Humanos , Streptococcus pyogenes/patogenicidade , Fatores de Virulência/metabolismo
16.
Methods Enzymol ; 526: 45-59, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23791093

RESUMO

The fluorescent sensor HyPer allows monitoring of intracellular H2O2 levels with a high degree of sensitivity and specificity. Here, we provide a detailed protocol of ratiometric imaging of H2O2 produced by cells during phagocytosis, including instructions for experiments on different commercial confocal systems, namely, Leica SP2, Leica SP5, and Carl Zeiss LSM, as well as wide-field Leica 6000 microscope. The general experimental scheme is easily adaptable for imaging H2O2 production by various cell types under a variety of conditions.


Assuntos
Corantes Fluorescentes/metabolismo , Peróxido de Hidrogênio/análise , Microscopia Confocal/métodos , Animais , Linhagem Celular , Humanos , Peróxido de Hidrogênio/metabolismo , Imagem Óptica/métodos , Fagocitose , Transfecção/métodos
17.
J Cell Sci ; 123(Pt 14): 2502-11, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20571055

RESUMO

Sortilin, also known as neurotensin receptor 3 (NTR3), is a transmembrane protein with a dual function. It acts as a receptor for neuromediators and growth factors at the plasma membrane, but it has also been implicated in binding and transport of some lysosomal proteins. However, the role of sortilin during phagosome maturation has not been investigated before. Here, we show that in macrophages, sortilin is mainly localized in the Golgi and transported to latex-bead phagosomes (LBPs). Using live-cell imaging and electron microscopy, we found that sortilin is delivered to LBPs in a manner that depends on its cytoplasmic tail. We also show that sortilin participates in the direct delivery of acid sphingomyelinase (ASM) and prosaposin (PS) to the phagosome, bypassing fusion with lysosomal compartments. Further analysis confirmed that ASM and PS are targeted to the phagosome by sortilin in a Brefeldin-A-sensitive pathway. Analysis of primary macrophages isolated from Sort1(-/-) mice indicated that the delivery of ASM and PS, but not pro-cathepsin D, to LBPs was severely impaired. We propose a pathway mediated by sortilin by which selected lysosomal proteins are transported to the phagosome along a Golgi-dependent route during the maturation of phagosomes.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Complexo de Golgi/metabolismo , Macrófagos/metabolismo , Saposinas/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Brefeldina A/farmacologia , Linhagem Celular Tumoral , Feminino , Complexo de Golgi/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Fagocitose , Fagossomos/metabolismo , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética
18.
J Cell Sci ; 122(Pt 16): 2935-45, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19638408

RESUMO

Dynamic remodelling of the cortical actin cytoskeleton is required for phagocytic uptake of pathogens and other particles by macrophages. Actin can also be nucleated de novo on membranes of nascent phagosomes, a process that can stimulate or inhibit phagosome fusion with lysosomes. Recently, phagosomes were shown to polymerize actin in transient pulses, called actin ;flashing', whose function remains unexplained. Here, we investigated phagosomal actin dynamics in live macrophages expressing actin tagged with green fluorescent protein (GFP). We show that only immature phagosomes can transiently induce assembly of actin coat, which forms a barrier preventing phagosome-lysosome docking and fusion. The capacity of phagosomes to assemble actin is enhanced in cells exposed to increased phagocytic load, which also exhibit a delay in phagosome maturation. Parallel analysis indicated that polymerization of actin on macropinosomes also induces compression and propulsion. We show that dynamic interactions between membrane elastic tension and compression forces of polymerizing actin can also lead to macropinosome constriction and scission - a process that is obstructed on rigid phagosomes. We hypothesize that the rate of individual phagosome maturation, as well as the biogenesis and remodelling of macropinosomes, can be regulated by the extent and manner of actin assembly on their membrane.


Assuntos
Actinas/metabolismo , Lisossomos/metabolismo , Macrófagos/metabolismo , Fusão de Membrana , Fagossomos/metabolismo , Animais , Polaridade Celular , Regulação para Baixo , Lisossomos/ultraestrutura , Macrófagos/citologia , Macrófagos/ultraestrutura , Camundongos , Modelos Biológicos , Fagocitose , Fagossomos/ultraestrutura
19.
Traffic ; 9(12): 2100-16, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18817527

RESUMO

The infection by Salmonella enterica results in the massive remodeling of the endosomal system of eukaryotic host cells. One unique consequence is the formation of long tubular endosomal compartments, so-called Salmonella-induced filaments (SIF). Formation of SIF requires the function of type III secretion system and is a requirement of efficient intracellular proliferation of Salmonella. Using high-resolution live cell imaging approaches and electron microscopy, we report for the first time the highly dynamic characteristics of SIF and their ultrastructural properties. In the early phase of infection (4-5 h), SIF display highly dynamic properties in various types of host cells. SIF extend, branch and contract rapidly, and a stabilized network of SIF is formed later (>or=8 h after infection). The velocities of SIF extension and contraction in the different phases of infection were quantified. Our observations lead to novel models for the modification of host cell transport processes by virulence factors of intracellular Salmonella.


Assuntos
Endossomos/metabolismo , Salmonella enterica/fisiologia , Animais , Linhagem Celular , Sobrevivência Celular , Endossomos/ultraestrutura , Humanos , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Camundongos , Microscopia Eletrônica de Transmissão
20.
J Virol ; 80(9): 4610-22, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16611921

RESUMO

Mouse polyomavirus (PyV) virions enter cells by internalization into smooth monopinocytic vesicles, which fuse under the cell membrane with larger endosomes. Caveolin-1 was detected on monopinocytic vesicles carrying PyV particles in mouse fibroblasts and epithelial cells (33). Here, we show that PyV can be efficiently internalized by Jurkat cells, which do not express caveolin-1 and lack caveolae, and that overexpression of a caveolin-1 dominant-negative mutant in mouse epithelial cells does not prevent their productive infection. Strong colocalization of VP1 with early endosome antigen 1 (EEA1) and of EEA1 with caveolin-1 in mouse fibroblasts and epithelial cells suggests that the monopinocytic vesicles carrying the virus (and vesicles containing caveolin-1) fuse with EEA1-positive early endosomes. In contrast to SV40, PyV infection is dependent on the acidic pH of endosomes. Bafilomycin A1 abolished PyV infection, and an increase in endosomal pH by NH4Cl markedly reduced its efficiency when drugs were applied during virion transport towards the cell nucleus. The block of acidification resulted in the retention of a fraction of virions in early endosomes. To monitor further trafficking of PyV, we used fluorescent resonance energy transfer (FRET) to determine mutual localization of PyV VP1 with transferrin and Rab11 GTPase at a 2- to 10-nm resolution. Positive FRET between PyV VP1 and transferrin cargo and between PyV VP1 and Rab11 suggests that during later times postinfection (1.5 to 3 h), the virus meets up with transferrin in the Rab11-positive recycling endosome. These results point to a convergence of the virus and the cargo internalized by different pathways in common transitional compartments.


Assuntos
Endossomos/metabolismo , Endossomos/virologia , Polyomavirus/fisiologia , Transferrina/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Caveolina 1/genética , Caveolina 1/metabolismo , Linhagem Celular , Transferência Ressonante de Energia de Fluorescência , Concentração de Íons de Hidrogênio , Fusão de Membrana , Camundongos , Microscopia Eletrônica , Ligação Proteica , Transporte Proteico , Fatores de Tempo , Vírion/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...